Language models have revolutionized the field of NLP. However, language models capture and proliferate hurtful stereotypes, especially in text generation. Our results show that **4.3% of the time, language models complete a sentence with a hurtful …
We investigate grounded language learning through real-world data, by modelling a teacher-learner dynamics through the natural interactions occurring between users and search engines.
Sentiment analysis is a common task to understand people's reactions online. Still, we often need more nuanced information: is the post negative because the user is angry or because they are sad? An abundance of approaches has been introduced for …
The paper describes the MilaNLP team’s submission (Bocconi University, Milan) in the WASSA 2021 Shared Task on Empathy Detection and Emotion Classification. We focus on Track 2 - Emotion Classification - which consists of predicting the emotion of …
While emotions are universal aspects of human psychology, they are expressed differently across different languages and cultures. We introduce a new data set of over 530k anonymized public Facebook posts across 18 languages, labeled with five …
Recently, Natural Language Processing (NLP) has witnessed an impressive progress in many areas, due to the advent of novel, pretrained contextual representation models. In particular, Devlin et al. (2019) proposed a model, called BERT (Bidirectional …