NLP

Compromesso! Italian Many-Shot Jailbreaks Undermine the Safety of Large Language Models

As diverse linguistic communities and users adopt large language models (LLMs), assessing their safety across languages becomes critical. Despite ongoing efforts to make LLMs safe, they can still be made to behave unsafely with jailbreaking, a …

My Answer is C: First-Token Probabilities Do Not Match Text Answers in Instruction-Tuned Language Models

The open-ended nature of language generation makes the evaluation of autoregressive large language models (LLMs) challenging. One common evaluation approach uses multiple-choice questions to limit the response space. The model is then evaluated by …

Political Compass or Spinning Arrow? Towards More Meaningful Evaluations for Values and Opinions in Large Language Models

Much recent work seeks to evaluate values and opinions in large language models (LLMs) using multiple-choice surveys and questionnaires. Most of this work is motivated by concerns around real-world LLM applications. For example, politically-biased …

XSTest: A Test Suite for Identifying Exaggerated Safety Behaviours in Large Language Models

Without proper safeguards, large language models will readily follow malicious instructions and generate toxic content. This risk motivates safety efforts such as red-teaming and large-scale feedback learning, which aim to make models both helpful …

Safety-Tuned LLaMAs: Lessons From Improving the Safety of Large Language Models that Follow Instructions

Training large language models to follow instructions makes them perform better on a wide range of tasks, generally becoming more helpful. However, a perfectly helpful model will follow even the most malicious instructions and readily generate …

SafetyPrompts: a Systematic Review of Open Datasets for Evaluating and Improving Large Language Model Safety

The last two years have seen a rapid growth in concerns around the safety of large language models (LLMs). Researchers and practitioners have met these concerns by introducing an abundance of new datasets for evaluating and improving LLM safety. …

Classist Tools: Social Class Correlates with Performance in NLP

Since the foundational work of William Labov on the social stratification of language (Labov, 1964), linguistics has made concentrated efforts to explore the links between sociodemographic characteristics and language production and perception. But …

Impoverished Language Technology: The Lack of (Social) Class in NLP

Since Labov's (1964) foundational work on the social stratification of language, linguistics has dedicated concerted efforts towards understanding the relationships between socio-demographic factors and language production and perception. Despite the …

The Empty Signifier Problem: Towards Clearer Paradigms for Operationalising 'Alignment' in Large Language Models

In this paper, we address the concept of 'alignment' in large language models (LLMs) through the lens of post-structuralist socio-political theory, specifically examining its parallels to empty signifiers. To establish a shared vocabulary around how …

SimpleSafetyTests: a Test Suite for Identifying Critical Safety Risks in Large Language Models

The past year has seen rapid acceleration in the development of large language models (LLMs). For many tasks, there is now a wide range of open-source and open-access LLMs that are viable alternatives to proprietary models like ChatGPT. Without …